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Abstract

This paper introduces a learning problem related to the task of converting printed documents
to ASCII text files. The goal of the learning procedure is to produce a function that maps
documents to restoration techniques in such a way that on average the restored documents
have minimum OCR error. We derive a general form for the optimal function and use it to
motivate the development of a nonparametric method based on nearest—neighbors. We also
develop a direct method of solution based on empirical error minimization for which we prove a
finite sample bound on estimation error that is independent of distribution. We show that this
empirical error minimization problem is an extension of the empirical optimization problem for
traditional M—class classification with general loss function and prove computational hardness
for this problem. We then derive a simple iterative algorithm called Generalized Multi-Class
Ratchet (GMR) and prove that it produces an optimal function asymptotically (with probability
1). To obtain the GMR algorithm we introduce a new data map that extends Kesler’s construction
for the multiclass problem (e.g. see p. 266 in (Duda, Hart, & Stork, 2000)) and then apply an
algorithm called Ratchet to this mapped data, where Ratchet is a modification of the Pocket
algorithm (Gallant, 1990). Finally we apply these methods to a collection of documents and
report on the experimental results.
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1 Introduction

We describe a learning problem related to the task of converting printed documents to ASCII
text files. Existing optical character reader (OCR) systems can accomplish this with high ac-
curacy when the document is pristine, but tend to perform poorly when the document contains
noise or distortion. One solution is to add a stage to the OCR process pipeline that enhances
the digitized document before it is converted to ASCII. The operation performed by this stage,
which accepts a digitized document and produces an enhanced digitized document, is referred
to as “restoration”. Restoration techniques work best when they are specialized to the type of
noise or distortion present in the document. Indeed, several restoration techniques have been
developed with this in mind (Cannon, Hochberg, & Kelly, 1999). With such techniques in hand
what remains is to choose the restoration technique most appropriate for a given document.
In short, we seek a function that maps digitized documents to restoration techniques in such a
way that the restored documents have reduced OCR error rates. It is common to decompose
this function into two stages; a feature map which converts digitized documents to feature
vectors, and a classifier which maps feature vectors to a choice of restoration technique. The
feature map is crafted by the designer with the goal of producing a simplified representation
of documents that retains information essential to the task. For example several features that
carry information relevant to the selection of a suitable restoration technique are described
in (Cannon et al., 1999). Although the map from feature vectors to restoration techniques is
a standard multi—class classifier, we will see that the corresponding learning problem is not
standard. This learning problem is the main concern of this paper. The document conversion
process just described is illustrated in Figure 1.
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Figure 1: Document Conversion Process
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2 Formulation of the Learning Problem

In the process described above printed documents are digitized and converted to feature vectors.
Let X denote the space where the feature vectors live. The map from printed documents to
feature vectors is generally many—to—one so that multiple documents may map to the same
feature vector. Let M be the number of restoration techniques (including “no restoration”)
and without loss of generality let C = {1, ..., M } be the space of labels for restoration techniques.
Let Y = [0,1]™ be the space of OCR error rate vectors where y € ) contains one component for
each restoration technique. Now consider a real world system that converts printed documents
to ASCII files using the process illustrated in Figure 1, and then determines their error rates.
We assume that the feature and error rate vectors are i.i.d. samples from a random process
characterized by a measure P on X x ).

Let F : X — C denote the class of functions that we wish to consider for our classifier and
let e : F — [0, 1] be the function that computes average OCR error rate, that is

e(f) = B [y)] (1)

where ¢’ is the i-th component of the vector y. We seek a function f € F that minimizes
e. However, since P is unknown e(f) is not computable and determination of such a function
through direct optimization is not possible. On the other hand it may be possible to use
empirical information (e.g. examples of z and y) to produce a near optimal f.

In particular we consider the employment of empirical information obtained as follows.
A corpus of n documents is gathered and digitized. Each document is restored using all M
techniques, and each restored document is converted to an ASCII file using a conventional OCR
system. Then the character error rate for each ASCII file is determined by a human expert.
This gives a collection D, = ((1,¥1), .-, (Zn,yn)) of empirical observations where z; is the
feature vector representation of document 7 and y; is the M-vector of error rates for document
1. Our goal is to determine a learning procedure L that accepts D, as its input and outputs a
function f with e(f) as small as possible.

In Section 3 we present a nearest neighbor method. This method is developed in the
spirit of the traditional nonparametric approach to statistical inference which determines the
general form of the optimal inference rule as a function of the data distribution (or parameters
thereof) and then substitutes a nonparametric (e.g. local) estimate of the distribution function
(or its parameter values) into this general form. This method is indirect in the sense that the
learning process is more directly concerned with the estimation of a distribution function (or
its parameter values) than with the accuracy of the induced inference rule.

In Section 4 we develop a direct method that chooses f to minimize an empirical version
of the error function defined in (1). We prove that the excess error due to optimization over a
finite sample is bounded and converges to zero as n goes to infinity. Specifically, let e* be the
optimal error

e* = infe
inf e(/)

and let f, be a function determined by minimizing the empirical error. We prove a bound
on the estimation error e(f,) — e* that (with high probability) decreases monotonically to



LANL Technical Report: LA-UR-01-6860 3 A Nearest Neighbor Method

zero with n. We show that the empirical error minimization problem is an extension of the
empirical optimization problem for traditional M—class classification with general loss func-
tion. We prove computational hardness for this problem, and then develop a simple algorithm
called Generalized Multi-Class Ratchet (GMR) which we prove provides an optimal solution
asymptotically (with probability one).

Finally, in Section 6 we present experimental results that compare these methods with
previous methods on a real world corpus.

3 A Nearest Neighbor Method

Suppose we wish to determine a function that minimizes the error defined in (1). The following
theorem characterizes the form of the optimal solution and motivates the nearest neighbor
method described below.

Theorem 1. Let X be a set, Y = [0,1]™ and P be a measure on X x Y with density p. Let
u(x) = Eylz] (2)

be the mean of y given a value x. Define a function f*: X — C by

f()EargI]nelgu()

where ties in the argmin; function are resolved by some fized rule. Then the function f*
provides an optimal solution to the problem

min <)
where e(f) = E [y7@)].

Proof. The criterion e takes the form

E [yf(m)] f p(z,y)dzdy
=/ [fyf p(ylz)dy] p(z)dz
f[fyf yf@ [#)dy’ @] p(er)
= [ p(z) x)dz

where p(z)/(®) is the f(z)-th component of y(z). By definition u(z)f™ @ < u(z)® giving

e(f) = / () Ep(a)de < / (@)@ p(z)dz = e(f)
for all f. ¢

Theorem 1 motivates an approach of the form

f(z) € argmin 4 (x) (3)
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where fi(z) is an estimate of the mean error vector at z. If X is a metric space then a
nonparametric estimate fi(xz) can be formed by applying a nearest neighbor method to the
empirical observations in D,. For example a simple (but crude) estimate of ji(x) takes the
form

e =3 Y u (@
)

ieK(x

where K(x) is the index set of the k& samples from (x1,...,x,) that are closest to z under
the metric. We refer to the classifier f in (3) with 7 given by (4) as the k-nearest neighbor
method. We provide no formal analysis of this method, but its simplicity, along with the historic
success of this general approach to statistical inference, make it an attractive candidate for our
problem and so we include it in our empirical comparisons in Section 6. In the next two
sections we develop an alternative method based on empirical error minimization which is the
main contribution of this paper.

4 Empirical Error Minimization

Finite sample bounds on estimation error that are independent of the distribution can often
be derived for learning procedures that minimize a particular form of empirical error. For our
problem we define the empirical error as follows

enlf) = = Sl . )
=1

This is simply a Monte Carlo estimate of e(f) when the samples in D,, are i.i.d. Our learning
procedure then chooses a member of F that minimizes ey, i.e.

fn € arg ;Iéijrg en(f)- (6)

In section 4.1 we give support for this procedure by establishing a bound on estimation error as
a function of a shatter coefficient of F. Section 4.2 describes a particular class of functions F
called linear machines and derives a shatter coefficient bound for this class. Then, in Section 5
we discuss computational issues related to empirical error minimization and develop a simple
algorithm that is later used in our experiments.

4.1 Performance Bounds for Empirical Error Minimization

The theorem below gives a bound on estimation error as a function of the following n-shatter
coefficient of F.

Definition 1. Let X be a set, C = {1,2,..., M}, and F be a class of functions from X to C.
Let X, = (21,22, ..., 2n) € X™. We define the restriction fx, of a function f € F to the data
sample X, in the natural way and denote the resulting class of functions

Fx, ={fx, : Xn = C|f € F}.
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The n-shatter coefficient for F is defined

S(F,n) =sup|Fx,|
Xn

The following theorem holds.

Theorem 2. Let X be a set, C = {1,2,... M}, Y = [0,1]™ and P be a measure on X x Y.
Let F be a class of functions from X to C. Let Dy, = ((x1,y1), (X2,Y2), -y (Tn, Yn)) € (X x Y)"
be n ii.d. random samples and let P, denote the corresponding n—fold product measure. Let
e be the error function e(f) = E [yf(w)], with €* = infrcre(f), and empirical error e,(f) =

Iy yzf(wi). Let f,, be chosen to satisfy

fn € arg;réijrrlen(f). (1)
Then for every e > 8/n,

Py (e(fn) — € > €) < 28(F, 2m)e " /1007 He) p gmnlemt/m)T/A(Be )
where S(F,2n) is the 2n-shatter coefficient of F.

Proof. Our proof uses a theorem by Bartlett and Lugosi (stated below) which gives an estima-
tion error bound in terms of the following covering numbers. Let Z be a set and consider a
class G of functions g : Z — [0,1]. Let Z, = (#1,...,2n) € Z" and define the distance between
two functions in G to be

doo(91,92, Zn) = max l91(2:) — g2(2:)|-

2 n

The covering number Ny (G, Z,,€) of G at scale € is the smallest N for which a set G, =
<

{91, ...,gn } exists such that for every g € G there exists a g; € G, such that d(9g, g, Zn) €.

The following theorem is proved in (Bartlett & Lugosi, 1999).

Theorem 3 (Bartlett and Lugosi). Let Dy, = ((z1,y1), (z2,Y2), -, (Tn,yn)) € (X X V)" be
n ii.d. random samples. Letl(-,-) be a function that takes values in [0, 1] and let L be a class of
loss functions L= {l(f(-),") : f € F} where F is a class of functions on X. Let e be the expected

loss e(f) = E[l(f(z),y)], with e* = infrcre(f), and empirical loss e, (f) = 2 57 1 1(f (%), yi)-
Let f, € F be chosen to satisfy

enlln) < fut enf) +1/n ®)
Then for every € > 4/n,

Pole(fn) — €* > 2¢) < 2B, [Noo (c,DQn, £

—ne? /(4e* +8¢) —n(e—4/n)?/(8e*+2¢)
8)] € +e .
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With the appropriate choice of loss function this theorem applies directly to our problem.
In fact this theorem can probably be proved directly in terms of |Fx,, |, but we see no virtue
in doing so here. To apply this theorem we let F be the function class defined in Theorem 2
and define I(u,y) = y* so that the class of loss functions in (z,y) is given by

L={(z,y) —y' @ feF}

With this class infscre,(f) = mingere,(f) and so the function f, chosen in (7) satisfies
condition (8) in Theorem 3. Thus, to prove theorem 2 we need only replace ¢ with €¢/2 and
show that

Egn[ (ﬁ Dy, )] < S(F,2n)

16
Let Fx,, and fx,, be as defined in Definition 1 and Lx,, be the restriction of £ to Fx,,. Since

doo(f1, f2, Xon) = maxg,ex,, |f1(zi) — f2(x;)|, then Fx,, is an e-cover of F with respect to doo

for any € > 0 and since |[I(f(z;),vi) — I(fx,, (%i), v:)| = |yif(m”‘) — nyin (mi)| = 0 this implies Lx,,

is an e—cover of £ for any € > 0. Thus Nu (£, D2y, 15) < |Lx,,| < |Fx,,| and
Ban [Noo (£, Dan, 1) | < sup|Fxs,| = S(F, 2n).
16 Xoy,
¢

The fact that we have obtained the bound in Theorem 2 as a special case of a more general
theorem suggests that it may be possible to improve the bound. In addition, to make the final
result easier to interpret we have bounded the expected value of N by its supremum which
may contribute to the looseness of the bound. Nevertheless Theorem 2 establishes the first
finite sample bound on estimation error for the learning problem described in Section 2 and
as a consequence it not only enables a consistency result for the empirical error minimization
learning strategy but gives a bound on the rate at which the estimation error goes to zero.
Indeed, we now state a simple corollary of this theorem which demonstrates a bound on this
rate. With probability 1 — 4,

elfn) < e+ 2 1og (25“ 2n) + f\/ 25“"”64). )

0
To see this let
§ = 25(F, 2n)e e /16(e" +e) | o=n(e=8/n)? /(8¢ +¢) (10)
and note that the probability statement in the theorem implies
P, (e(fn) —€" <€) >1-04. (11)

To obtain (9) we use (10) to derive an upper bound on € as a function of §, which in turn
provides a probabilistic bound on e(f,,) —e* according to (11). In this derivation the restriction
€ > 8/n maps to a restriction on 4. For € > 8/n the right hand side of (10) is monotonically
decreasing in € which implies that § < 1 + 2S(F,2n)e~%/("¢"+8) which in light of (11) is a
trivial restriction.
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The second term in (10) is less than

16¢ _ ne?
e 4(8e* +¢) e 4(8e* +¢)

and since <1 the second term is less than

_€
8e*+e€

7L62

6467 4(8e* +¢)
and

_ ne2 _ ne?
§ < 28(F,2n)e” BT 4 ele” 1T
2

< (258(F,2n) + eﬁefﬁ

so we can say that

2

§ < b= (28(F,2n) + e*)e” 3%+

If we further denote b = ?;1_2 log W then
2
<
e* +e

or
€2 —be — be* =0

and we use the solution

bV deth
e

Applying the inequality
Va+b<va+Vbh, Va,beRt
we obtain

€< b+b+22‘/e_\/5:b+x/e7x/5

or written out

4 Empirical Error Minimization

2 2 2 4 2
€< %log (%) +Ve?\/%log

<25(.7-",2én) + e4>.

Since e(f,) — €* < € and § < é then with probability 1 — § we obtain the result in (9). This
result guarantees the following. The employment of empirical risk minimization with function
classes F whose shatter coefficient grows subexponentially with n produces a function f, whose
generalization error exceeds the optimal generalization error by an amount that is bounded by
an expression that decreases asymptotically to zero with n. In the next section we analyze a
specific function class called linear machines and show their shatter coefficients to be polynomial
in n. This translates into a bound O(y/Inn/n) on the rate at which the estimation error goes

to zero.
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4.2 Linear Machines

We now restrict our attention to classes F called linear machines. Let X be a set. We construct
the space of functions f : X — C in the following way. Let W denote a real vector space of
linear functions w : X — R of dimension d. Let F denote the space of maps f X - RjRM
consisting of M choices fZ € W,i = 1,..,M. The general form of a linear machine is the
composition of an element of F and the winner—take—all function, i.e.

f(a) € arg max f*(2) (12)

where a rule is provided for breaking ties. For simplicity we employ the tie breaking rule that
chooses the largest index involved in the tie. That is we define the linear machine determined

byfas

fi(z) = max . (13)

where If(x) is the set

Tj(w) = argmax f*(z).

We denote the class of linear machines that results when f varies over all of F by F.

We now determine a bound on the shatter coefficient for 7. We denote the set of points in
X determined by X, with the same name X,, C X. We define fx, and Fx, as in Definition
1. Our goal here is to bound |Fx, | uniformly in X,,. To this end we utilize an analogue of VC
dimension and Sauer Lemma for such classes of sets. We follow Natarajan (Natarajan, 1991).

A subset S is said to be shattered by F if there exist two functions f,g € F such that
1. For all z € S, f(z) # g(z).
2. For all S C S, there exists an h € F such that

h(z) = f(z), z€5

h(z) =g(z), z€ S-S5

The (now called) Natarajan dimension N (F, X,,) of F with respect to X, is defined as the size
of the largest subset of X,, which is shattered by F. We now bound this dimension in terms of
W and C.

Lemma 1. Let W, C, and X,, be as above. Then

N(F, X,) < M(M - 1)d.

Proof. Let S C X,, C X be a set which is shattered by F. As a consequence of this definition
of shattering, there exist two functions f and g with the properties mentioned above. Consider
two values i1,73 € C where i1 < io and define

Q(i1,i2) = {x € Xy : f(z) =i1,9(x) =12}
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and
Silz'2 == S ﬂ Q(Zl,Zz)

For any subset Sy C Sj,i, there exists an h € F such that h(z) = f(z) = i; when z € S; and

A

h(z) = g(z) = i when z € Sj 5, — S1. Let h be a member of F that determines h and let
Sh = h* — R,

Then from the definition (13) of the linear machine h
S1 = {:(7 S Si1i2 : (5h(m) > 0}.

Consequently under the standard definition of shattering for binary function classes (e.g. see
p. 196 in (Devroye, Gyorfi, & Lugosi, 1996)) S;,;, is shattered by W and by the theorem of
Steele and Dudley (e.g. see p. 221 in (Devroye et al., 1996)) on the VC dimension of classifiers
determined from vector spaces of linear functions

|Si1i2| <d.
The same inequality is true when 45 < i1. Finally since X,, = Uj;; 24, Q(i1,¢2) is a disjoint union
[SI= D ISiil = D 1SN Qir,i2)] < M(M —1)d
11742 11712
and the proof is finished. ¢
We are now in a position to bound |Fx, |.
Theorem 4. With the same assumptions as Lemma 1,

|an| < M2M2an2d

Proof. The analogue of the Sauer lemma we use is Lemma 5.1 on page 104 in (Natarajan,
1991);

|an| S MQN(T’X")nN(]:’X”).

If we then apply the simplified bound N (F, X,,) < M(M — 1)d < M?d from Lemma 1 the
proof is finished. ¢

5 Algorithms for Empirical Error Minimization

Section 4.1 established a generalization error bound for learning procedures that solve the em-
pirical error minimization problem in (6). This problem contains empirical optimization for
the traditional M—class classification problem with general loss function as a special case. To see
this consider the traditional M—class classification problem with training data ((z1,¢1), .., (Zn, cn))
(where ¢; € C). Let L be the M x M loss matrix where L, ; is the loss incurred when a pattern
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from class c is assigned to class ¢. If we set y; = (L, 1, Le; 25 -+, Le; i) then en(f) is precisely
the empirical loss function for the M-class classifier f. The optimization problem in (6) is
more general. Since the loss vectors depend on x they may be different for each of the n data
samples and therefore may not be the row vectors of any fixed loss matrix. For this reason we
call the optimization problem in (6) the M -Class Classification with Generalized Loss (MCGL)
problem.

We now restrict our study of the MCGL problem to the case where F is the class of linear
machines. We use the acronym MCGLpj, for this problem. For computation we must be
more specific about X and W than we were in Section 4.2. To this end we assume our feature
measurements z live in X C R? and we choose W = Rt to be the class of affine functions on
X defined by w- (1, z), where - is the usual inner product. Thus W is the class of linear functions
restricted to the domain X; = 1 x X C R%+L. This gives F = RM(4+1) and a shatter coefficient
for F that satisfies Theorem 4 with d replaced by d+1. To maintain a clear distinction between
feature measurements € A and members of the domain (1,z) € X; we use { as the domain
variable for X;. In addition we adopt the notation w = (wy,ws,...,wy) € RMED) for f so
that (13) becomes

fu(§) = [ Dax i (14)
where
Z,(§) = argmaxwy - €. (15)

In section 5.1 we show that the decision version of MCGLp s is computationally intractable
in the sense that there are instances that cannot be solved in polynomial time. Among the
paths that might be pursued in this situation we choose the development of an algorithm
for which we can prove asymptotic optimality. To this end we develop an adaptation of the
Pocket-with-Ratchet algorithm in (Gallant, 1990) that we call Ratchet. We prove that
Ratchet is asymptotically optimal for criteria that satisfy a property called PLD that we define
in Section 5.2. Then in Section 5.3 we prove that the MCGLL s criterion satisfies this PLD
property and use this result to determine a Generalized Multi-Class Ratchet (GMR) algorithm
for this problem. Although there is no guarantee that GMR will produce an optimal solution in
practice where we have finite computational resources, it is very simple and tends to perform
well in our experiments.

5.1 A Computational Hardness Result for MCGL,,

In this section we show that the following decision version of MCGLp s is NP-Hard.

Definition 2 (DECISION-MCGL.) (DMCGLL,)). Given a positive real number ¢,
positive integers d and M, a finite data sample E = ((£1,41), ..., (én,Yn)) Where & € 1 x R? and
y; € [0,1]™, and a class of functions F : 1 x ®¢ — {1,2,..., M} defined in (14), does there exist
an w € RM(@+1) gyuch that

n
i=1

10
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Lemma 2. DMCGLp; is NP-Hard.

Proof. The proof uses a reduction from the APPROX-HALFSPACES problem which is shown
to be NP-Complete in (Hoffgen & Simon, 1992).

Definition 3 (APPROX-HALFSPACES). (Hoffgen and Simon) Given a data sample A =
((u1,81), -y (un, $n)) where u; € {0,1}? and s; € {—1,1}, and an integer K > 1. Define e}, to
be the number or errors for (b,9) € R4,

ey = {i: (Y ui+b<0,s5=1)or (Y-ui+b>0,8=-1)}

Do there exist parameters b, such that e, < K?

Since the APPROX-HALFSPACES problem can easily be formulated as a restriction of the
DMCGLL s problem the reduction is straightforward and so we do not present it here. ¢

We note that since DMCGLy s is NP-hard it is possible to create an optimization version
of this problem that is very similar to MCGLp s that is also NP-Hard.

5.2 The Ratchet Algorithm

In this section we take a brief departure from our study of the MCGL s problem to develop
an algorithm called Ratchet. Ratchet is designed to (asymptotically) optimize a more general
class of problems whose criteria satisfy a property we call positive-linear—dependent (PLD).
This section defines the PLD property, develops the Ratchet algorithm and proves asymptotic
convergence for this algorithm. Section 5.2.1 then provides sufficient conditions for a function to
be PLD and Section 5.2.2 works out an important example. To realize Ratchet for a particular
criterion we must construct a map ¢ (described below) that witnesses the PLD property for
this criterion. Section 5.2.2 illustrates this by constructing such a map and proving the PLD
property for a two—class weighted error criterion. Qur treatment of this criterion allows us to
establish a context for Ratchet by showing how, on this particular problem, Ratchet can be
derived as a modification of the Pocket algorithm (Gallant, 1990).

We begin with some definitions. Let z € R™ and w € R™. We say that z is w—positive if
w-z > 0. Let Z be a countably infinite set and consider a set Z = {(21,%1), ..., (#n,in)} C R™xT
where z; € ®™ and {i1,...,i,} C T (this definition allows the set Z to have repeated values
of z distinguished by their index value 7). We use the abbreviated notation Z = {z;,,..., 2, }
for this set and we call this type of set a multisample. In addition we call {i1, ...,4, } the index
set for Z. Similarly we denote the subset {(2;,i5), ..., (zx,ix)} € Z by {2i;, ..., 2;;, } and refer
to it as a subsample of Z with index set {i;,...,ix} C {i1,...,in}. We define ZT C Z to be a
positive linear (PL) subsample of Z if there exists an w € R™ such that all members of Z* are
w—positive, and define

O ={w:w-2>0,Vz € Z1}

to be the witness set for Z1. For technical reasons we define the empty set to be a PL
multisample with the whole space as its witness set.

We consider minimization problems with criteria R that satisfy the following definition.

11
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Definition 4. Let A be a set and let R be a function from A x R™ to R. Suppose that
for every A € A, R4 = R(A,") achieves its infimum on a nontrivial set 2*(A4) C R™. Then
R is a positive—linear—dependent (PLD) function if there exists a map to multisamples ¢ :
A —— R™ x T, such that for every A € A there exists a PL subset of the multisample
(A) = {ziy, 2iy -}, 21, € R™,{i1,d2,...} C T whose witness set QF satisfies Ot C Q*(A).

In our application of this definition to learning problems A is the set of all training sets, i&t™
is the classifier parameter space, and R 4 is an empirical error function that we wish to minimize
with our choice of parameter w € R™. We consider PLD criteria because they appear in some
important learning problems (e.g. the MCGLs problem) and can be optimized by a very
simple algorithm when a map ¢ is known. Indeed, consider the Randomized Perceptron (RP)
algorithm acting on a multisample Z as illustrated in Algorithm 1. In the proof of Theorem 5

Algorithm 1 Randomized Perceptron
INPUT: A multisample Z = {z;,, 2iy, .-, Zi,, }-

k+0
w(0) <0
loop
i < random sample index drawn uniformly from {i1, 2, ...,%5 }
if (w(k) -2z <0) then
w(k+1) « w(k) + 2
else
w(k+1) + w(k)
end if
kE+—Fk+1
end loop

in Appendix Appendix A: we show that with probability 1 the w visited by RP witness every
PL subset of Z. Thus, a simple algorithm for optimizing a PLD criterion when ¢ is known is
to run RP on the multisample Z = ¢(A), compute the criterion value R4 each time w changes
value and save the one with the smallest criterion value. We call this the Ratchet algorithm
and it is illustrated in Algorithm 2. The following theorem establishes the optimality of this
algorithm.

Theorem 5. Let R be a PLD criterion witnessed by a map ¢. For every A € A consider
the sequence w(k),k = 0,1,... produced by the Ratchet algorithm with inputs A, R,¢. Let
w*(k),k =0,1,... be a sequence that satisfies w*(k) € arg min,y.i—g1,.x Ra(w(i)). Then

Ra(w*(k)) % min Ra(w)

w

where wpl denotes “with probability 17.

Proof. See Appendix Appendix A:. ¢
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Algorithm 2 Ratchet: w* is the ratchet parameter and w is the parameter for the randomized
perceptron algorithm.

INPUTS: An element A € A, a criterion function R, and a map ¢

{Compute the multisample Z}
Z = {Zin ,zln} — (z)(A)

{Initialize parameters.}
Set w(0) and w* to zero and set R* «+— R4(w*).

{Perform the randomized perceptron algorithm and track the best solution.}
k<« 0
loop
i < random sample index drawn uniformly from {1, s, ...,4, }
if (w(k) -2z <0) then
wk+1) « wk) + 2
if (Ra(w(k+1)) < R*) then
R* < Ra(w(k + 1))
w* —wlk+1)
end if
else
w(k +1) « w(k)
end if
k< k+1
end loop

5.2.1 Sufficient Conditions for PLD

To realize Ratchet for a particular criterion we must first determine that the criterion is PLD
witnessed by a known map ¢. The following lemma is often useful in establishing the PLD
property once a map ¢ has been proposed.

Lemma 3. Let A be a set and let R be a function from AXR™ to R. Suppose that for every A €
A, Ra = R(A,-) achieves its infimum on a nontrivial set Q*(A) CR™. Let ¢: A —>— R X T
be a map to multisamples. For A € A let Z = ¢(A) = {2iy; - 2, }»2i; € R {i1,yin} C T
and let J*(w) = {ij : w - zi; > 0} denote the index set of w-positive samples from Z. If for
every A € A and every w € R'™ there exists an & € R™ such that

3.1. JH () D JH(w)

3.2. R4(W) = Ry(w)

3.3. (wo,wl e R™ and J+(u'10) 0 J+(L{J1)) = (RA((U()) < RA(wl)).

then R is PLD witnessed by ¢.

Proof. Let A € A, w* € Q*(A), and let Q" be the witness set for the samples indexed by
JT(w*). For any wy € QT the relation J*(wp) 2 J*(&*) holds and therefore J T (&g) 2 JT(w*)

13
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holds by condition 3.1. Consequently conditions 3.2 and 3.3 give
Ry(wp) = Ra(dp) < Ry(b*) = Ry(w').

Consequently wy is optimal and so Q* C Q*(A). ¢

5.2.2 Ratchet from Pocket

In this section we establish the PLD property for a two—class weighted error criterion and show
how the Ratchet algorithm for this criterion can be derived as a modification of the Pocket
algorithm (Gallant, 1990).

Gallant introduced Pocket for the problem of minimizing the empirical error of a linear clas-
sifier. This problem is the optimization version of the APPROX-HALFSPACES problem in Def-
inition 3 with u extended to R%. If we let & = (1,u;), w = (b,7)) and A = ((£1, 81), .-, (€nsSn)) €
(X1 x {—1,1})"™ then the criterion to be minimized is defined by

Ro(w) =) T(w- &> 0,8=—1)+T(w-& < 0,5 =1)
i=1

where I(+) is the indicator function that takes a value 1 when its argument is true and 0 other-
wise. A nonzero contribution from the i—th component of this sum represents an error for the
linear classifier defined by sign(w - ) (where sign(0) = —1) on the sample (;, s;). The Pocket
algorithm operates by running the RP algorithm on the multisample Z = {z1, ..., 2, }, zi = 8;&;,
computing the run length for each w visited (i.e. the number of consecutive w—positive samples
encountered before w is modified by the algorithm), and retaining the w(k) with the largest run
length in the “pocket”. Gallant also introduces a variation called Pocket-with-Ratchet that
places a new value of w in the pocket only when it has both a larger run length and witnesses a
smaller criterion value. These Pocket algorithms are attractive because the run length is very
simple to compute, but they may not be appropriate for other criteria. For example consider
the weighted error criterion R defined by

n
Ra(w) =Y cal(w-&> 0,8 =—1)+cl(w- & < 0,8 =1)
i=1

where c_1,c; are the costs for the two types of classification error, and consider the obvious
adaptation of the Pocket-with-Ratchet algorithm that operates on the same multisample Z
and replaces the value of w in the pocket when the run length is larger and the criterion value
R4(w) is smaller. With ¢_; = ¢; the criterion R4 = R4 is minimized when the number of
positive samples in Z is maximized and so values of w with larger run lengths are more likely
to have smaller criterion values, but this is not necessarily true when c_; # c¢;. In fact it
seems unlikely that any statistic computed on w—positive samples only can be used to order
Q when c_1 # c¢1. More generally the determination of a suitable replacement for the run
length rule remains an open problem. The Ratchet algorithm is obtained by removing the
run length rule from Pocket-with-Ratchet so that a value of w with the smallest criterion
value is saved in the pocket. This requires that the criterion value be computed each time w is
modified and therefore requires more computation than the Pocket algorithms, but it yields a

14
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viable algorithm. Indeed, Lemma 4 below verifies that the criterion R is PLD witnessed by a
map that gives z; = s;§;, and is therefore optimized asymptotically (wpl) by the realization of
Ratchet just discussed.

Lemma 4. Let R be a function from A x R to R where A = (X1 x {=1,1})". For any
A= ((&1,81), -, (Enysn)) € A where & € X1, s; € {—1,1} let R4 = R(A,"-) be defined by

n
Ra(w) = Zc—lf(w'& >0,8=-1)+el(w-§ <0, =1)
i=1

where 0 < c_1,¢1 < 00. Let N be the set of natural numbers. Then R is PLD witnessed by the
map ¢ : A —— ({=1,1} x X) x N defined by ¢(A) = {z1,..., 2n }, 2i = 8i&.

Proof. See Appendix Appendix A:. ¢

5.3 The Generalized M-Class Ratchet Algorithm

In this section we show how the Ratchet algorithm can be used to solve the MCGLy s opti-
mization problem. We do this by constructing a map ¢ that witnesses the PLD property of
the MCGLp s criterion. The map ¢ is then used to determine a realization of Ratchet for the
MCGLp s problem.

In the MCGLy s optimization problem we minimize the criterion defined in (5) over the
class of linear machines defined at the beginning of Section 5. Recall that for this class of
functions the criterion is defined on the data ((&1,v1), ..., (€n,¥n)) which is obtained from the
original data ((x1,91), .-, (Zn,yn)) by applying the map z — (1,z) to each z;. The criterion R
is defined by

1 o .
=1

where E = (515"%671,) € Xfla Y = (ylv"'ayn) € ([Ov 1]M)n7 W = (TU]_,'UJQ,---,'UJM) € %M(d—'—l) and
the functions f,, are defined by (14).

To prove that R is PLD we construct a map ¢ that witnesses this property. We show
that under ¢ the data sample E maps to a multisample Z = {z1, ..., an(M_l)}, z; € XM such
that for every w € RM(@+1) there exists an & € RM(@+1) gych that the value Rz y)(w) of
the criterion R(zy) is equal to R(zy)() and is determined by a subsample of the w-positive
samples from Z, i.e. a PL subsample of Z. Thus there exists a collection of PL subsamples of
Z that determine all values of R(zy) and Rz y) is constant on any of their witness sets. The
PLD property follows directly.

We begin by defining a map ¢ which is an extension of Kesler’s construction for the mul-
ticlass problem (see p. 266 in (Duda et al., 2000), pp. 87-93 in (Nilsson, 1990), and (Smith,
1969)).

Definition 5. Let p : &y — 2ZM(M-1) z — XM be the function that maps a point ¢ to a
point (...,2jg,...), 1 < j < M, k:1<k< M,k # j where zj;, € Z is the vector obtained by
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concatenating M vectors as follows: £ is placed in the j—th position, —¢ in the k—th position,
and zero vectors are placed in the other M — 2 positions as illustrated below,

Zik = (O...O f 0..0 —f 0...0)
N~ N~
jth kth

Now let v : &P — Z"M(M=1) he the map defined by

Y(E) = (p(E1), - (En))-

We adopt the notation z;; for the jk—th member of p(&;) so that

The map ¢ : X" =— ZxXN 3 is then defined as the composition of ¥ with a map to multisamples
so that ¢(2) = {..., (2ijk, ijk), ...}, or with our abbreviated notation

Our next step is to develop an expression for the criterion value Ry, (w) in terms of
basic operations on the mapped samples z;;,. We accomplish this by developing an expression
for the values of f,|=z and substituting into (16). The following properties are useful in this
regard and are easily verified for all 1 < i <n, 1 <j < M, k:1< k< M,k # j and any
a = (a1, as, ...,ap;) where a; € RIFL,

1. pairwise comparison

aj-& >ap-& ) ifand only if (a - 2, > 0
a; - & < ap - &) if and only if (a - Zijk < 0 (17)
(aj & =ay f,) if and only if (a C Zijk = O)
2. winner—take—all with ties

Recall from (15) that Z,(§) = arg maxy, ay-£ and let us define T;, () = {j : miny a-z;;; = 0}.
Then

(|Ia(§z)| > 1) if and only if (maxmkina-zijk = O) if and only if (Ta(i) = Ia(fz)) (18)
J

3. winner—take—all without ties

(Zo(&) = {j}) if and only if (a < zije > 0,k # ]) if and only if (Ta(i) = (Z)) (19)
4. symmetry

Zijk = —Zikj (20)
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Using properties (18)-(19) in (14)

fult) = JeTo()
N (21)
=Y (I(W'Zijk > 0,Vk # j) +I<j= max z))
j=1 1€T, (i)

The first indicator function treats the case where there are no ties and the second treats ties.
The criterion value in (16) can be expressed

1 n M ) .
Rz y)(w) = - Z Z Y I(fu(&) = J)
i=1 j=1
and substituting the expression for f, from (21) gives
1 n M )
Rey)(w) = EZZQ/{ (I(w < zige > 0,Vk # 5) + I (j = lgﬂa,z_)l)) . (22)
i=1 j=1 ¥

To prove that R is PLD we verify conditions 3.1-3.3 in Lemma 3. We begin with a lemma
that confirms that for every w € RM(@+1 there exists an & € RM(@+1) without ties on = that
satisfies conditions 3.1-3.2.

Lemma 5. Let (E,Y) € (X1 x [0,11M)" and let Z = ¢(E) where ¢ is given by Definition 5.
Let Rz y) be the criterion function defined by (22). For every w € RM+Y) there exists an
O € RME+Y) guch that following properties hold;

5.1. Ty, (i) = 0,Vi
5.2. JT (&) D J*(w)
5.3. R(E,Y) ((;)) = R(E,Y) (w)

Proof. Let w = (wy,ws, ...,war) € KM and construct & = (1,19, ...,wyr) by adding a
small positive constant to each of the M offset parameters of w, i.e.

W =wj +(6;,0), 0€RY, 1<j<M

where §; is defined as follows. Let Z1 = {2 : 2zijk € Z, |w - 2| > 0} and let

5= min,;, ¢z, |w - zijk| | Z1] >0
1 |Z1|=0.

Now define
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This gives
W - Zijp = Wy - & — Wy - &

=wj- & —wk- &+ 05 — O

:w-zijk+(5j — 0.
Since |§; — 0| < d it follows that w - zjj5 > 0= & - 2555 > 0 and w -z, < 0= & - 235, < 0, and
since j > k & 0; > 0y, it follows that (w - zjx =0and j > k) = & -z, > 0 and (w - 250 =
0 and j < k) = -z < 0. This verifies properties 5.1 and 5.2, and also verifies that & makes
the same contribution as w to the sum in (22) when there is no tie. Thus, to verify property
5.3 all that remains is to show that & makes the same contribution as w to the sum in (22)
when there is a tie. For j € T, (i) property (18) implies w- z;, > 0,Vk ¢ T,,(i) and we have just
shown that this implies & - z;j > 0,Vk ¢ T,,(i). Also since j > k < §; > d; it follows that for
the winner j* of a tie (w- zjj=¢ = 0 and j* = maxjeq, ;1) = (- zij=x > 0,Vk € T, (4), k # j*)
from which we conclude that & - 2+ > 0,Vk # j* and our proof is complete. ¢

Properties 5.1 and 5.3 allow us to rewrite (22) as

n M
1 i, .
R(E,Y) (w) = ; E E yf](w * Rijk > 0,Vk # ]) (23)

i=1 j=1

which gives the criterion value in terms of the subsample of Z with index set JT (&) = {ijk :
& - zij > 0}. However, to verify condition 3.3 we must look more closely at how the criterion
value is affected by the structure of this index set.

Let € > 0 and define

J— ok
Age=4 C  BTo cicnl<j<ME:1<k<ME#] (24)
y; —vy;, otherwise

Define the target index sets

Jij ={ijk : Dijr > 0,1 <k < M,k#j}, 1<i<n1<j<M (25)
Let the w—positive subsets of these sets be

Jii (@) = {ijk : ijk € Jij and & - 25 > 0}
and let

Jif (@) = UL T (@). (26)

The following lemma, establishes properties of these index sets that are used to verify condition
3.3.

Lemma 6. Consider the definitions in (24)-(26) with & satisfying Lemma 5. The following
properties hold for all t =1,2,...,n.

6.1. if (Ayjz > 0 and Agy, > 0) then (Ayy > 0)
6.2 (17ul > |Jim|) if and only if (y} < u")
6.3. (j* = Argmax; ;. -+ (z) |Jij\) if and only if (d) zijer > 0,k # j*).
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Proof. We start with Property 6.1. If yf = y¥ then by definition Ajjr, = € > 0 so assume that
y! # yF. In this case we can write

kg I k1
Nije=vyi —vyl = (i —vl) + (W —vi)

and the assumptions A;;; > 0 and Ay, > 0 imply that both terms on the right are > 0. Also

since yg # yf at least one of them is strictly positive which completes the proof of Property
6.1.

The definitions in (24) and (25) insure that the number of elements in J;; equals the number
of components of y; that are greater than or equal to 1, i.e.

[ al = [{k : 4 >y}
Property 6.2 follows directly.

Now we prove Property 6.3. The left—-hand expression for j* is legitimate only if JZ-+ ()
contains at least one target set and the largest target set it contains is unique. We begin by
showing that it contains at least one target set. Let [* be the distinct index for which @-z;x, > 0
for all k # I*. This implies that JZ?;* (@) = Jy» and therefore that Jy« C J;" (). Note that this
includes the case where Jy« = J;7(0) = () so that the largest subset of J;' (&) has size 0. The
fact that the largest target set contained in Ji+ (&) is unique follows from the uniqueness of /*
and the remainder of our proof.

Let j* € Argmax;, ;. rt(s) |Ji;| and suppose that I* # j*. Then & - zj«j» > 0 and from
symmetry (20) it follows that & - z;j+;+ < 0, and since J;;» C J;F (&) it follows that I* ¢ J;;-
so that A;j-;» < 0. Therefore the definition of A in (24) implies that Ay;« > 0. Consider an
index ij*k € Jyj«. Since Ajj<p > 0 and Ajj« > 0 it follows from Property 6.1 that A« > 0
and so il*k € Jy so that |J;j| < |Jy+|. However since w - zj«j« > 0 and Ay ;+ > 0 the set Jy»
contains the index il*j* which is not in J;;« so that |J;j| < |Jy=|. Since Jy= = J. (0) C J;F (&)
this contradicts the definition of j*. ¢

We can now state and prove the main theorem.

Theorem 6. The MCGLrs criterion defined by (16) is PLD witnessed by ¢ in Definition 5.

Proof. We need only verify the conditions in Lemma 3. For any (Z,Y) and any w € ®M(d+1)
the criterion value Rz y)(w) is a finite sum and therefore Rz y) achieves its infimum on a
nontrivial subset Q*((2,Y)) C RM(@+1) | Lemma 5 verifies conditions 3.1 and 3.2. To finish the
proof we must verify condition 3.3, i.e.

(wo, w1 € RMEHY and J™ (&) 2 JT(@1)) = (Rey)(wo) < Rzy)(wi))
Applying Property 6.3 to (23) gives
1 n M ]
R, NS I =arg max

n .
i=1 j=1 TG,

3
€
|

JJal)- (27)
(@)
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Let j; = argmax; ;. 7+, |Jir|. If JT (o) D JT (1) then since J* = U;J;" is a disjoint union
J (@o) 2 J;F (w1) and so by (27) R(z,y)(wo) can deviate from Rz y)(w1) only if J* (o) contains
additional target sets Jj where |J;| > |J;;| for one or more . If J¥(&g) contains additional
target sets that satisfy this condition then by Property 6.2 and (27) we have Rz y)(wo) <
Rz y)(w1) and our proof is complete.

As a consequence of Theorem 6 we can apply the Ratchet algorithm with arguments (Z,Y),
R and ¢ to provide a solution to the MCGLy s criterion. The following observations lead to a
more efficient practical implementation. First it is possible to prove that the PLD property is
also witnessed by a map ¢ that yields the multisample Z C Z defined by

Z = {zijk P Zijk € Z, Aijk > 0}.

Although we do not provide the proof, it it easy to see that this will not affect the solution
since from (27) it is clear that criterion values can be expressed exclusively in terms of these
samples. Second, since multiplying each point in Z by a positive scalar has no effect on its PL
subsamples it is possible to prove that the PLD property is also witnessed by a map ¢’ that
yields the multisample

7d) ! ! >
Z" = Az + Zije = DijrZijh, Zijk € 2}

Applying the Ratchet algorithm to this set leads to the Generalized Multi—class Ratchet (GMR)
algorithm in Algorithm 3. We present this algorithm in terms of its operation on the original
data ((&1,91), -, (€05 Yn)), i-€. the map ¢’ is implemented implicitly.

6 Experimental Results

In this section we present the results of experiments with a collection of documents called the
QT corpus. The Q7 corpus consists of 1445 printed documents (varying in size from 106 to 6290
characters) that were digitized and restored using 9 different methods. Each original document,
along with its 9 restored versions, was converted to an ASCII text file using an existing OCR
system. Then the character error rate for each of the 14,450 ASCII text files was determined
manually. In addition, each digitized document is represented by a d = 7 dimensional feature
vector when presented to the classifier. The components of these feature vectors represent 7
different document image quality measures designed to quantify notions like “speckle”, “broken
characters”, “touching characters”, etc. Each quality measure is a real number in the range
[0,1] and is designed so that smaller values represent better quality. A detailed description of
the methodology used to design the 9 restoration methods and the 7 quality measures can be
found in (Cannon et al., 1999) (although the specific restoration methods and quality measures
designed in (Cannon et al., 1999) are different from those used here). In summary the Q7
corpus is a data sample D, = ((x1,y1), .-, (Tn,yn)) with n = 1445 samples, where z € [0, 1]¢
with d = 7, and y € [0,1]™ with M = 10 (9 restorations and 1 original).

Table 1 shows the average OCR error rates (averaged over the corpus) for the unrestored
corpus and for the corpus restored using each of the 9 methods. It also shows that average
OCR error rates when the corpus is restored using the method that gives the best and worst
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Algorithm 3 GMR: Generalized M-Class Ratchet Algorithm. w are the ratchet weights and
(w1, ws, ...,wpr) are the weights for randomized perceptron algorithm.

INPUTS: MaxlIter, and a data sample ((£1,y1),---, (€nsYn))
OUTPUT: w

{Initialization: (e is a lower bound on the error).}
w0, (wi,...,wp) < (0,...,0)

1 (&)
ew w2y
€ < min (l min_., ; k|yk—y]|)
n’ ijk:y; Fyp 19 g

. 15 3 c
€min = Zizl ming y;

{Perform the randomized multi-class perceptron algorithm and track the best solution.}
for iter =1 to Maxzlter do
i < random sample index drawn uniformly from {1,2,...,n}
(j, k) <= random index pair drawn uniformly from {(,m) : 1 <I,m < M,l # m}
if (yf =y/) then
A=¢
else _
A yf —y]
end if
if (A(w; —wg)-& <0) then
wW; — wj + AE;
Wg < Wi — Agz
if (23 y 0 < ¢,) then

373
€y — %Z] y;(wl """ wnn) ()
W < (wl, ceey wM)
end if
if (e, = emin) then
return(w)
end if
end if
end for
return(w)

OCR error rate for each document. The entries in this table represent estimates of error rates
for a general document population characterized by a fixed (but unknown) distribution. Each
restoration method is designed for a specific type of distortion and when applied to documents
without that distortion can actually degrade the document quality resulting in an increased
OCR error rate. On this corpus, no one of the 9 restoration methods provides an improvement
in error rate over that for the unrestored documents. In fact, in several cases the error rate
is significantly worse. On the other hand, each of the 9 methods leads to an improved OCR
error rate for a significant fraction of the 1445 documents as shown in the third column of the
table. In total, the OCR error rate can be improved for 81% of the documents using at least
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Type of Average Error % Documents with
Restoration | Rate for Corpus | Improved OCR Error
No restoration .1105 -

Method 1 1127 41

Method 2 .3150 22

Method 3 4132 19

Method 4 .1206 32

Method 5 .2082 31

Method 6 1139 45

Method 7 .1180 29

Method 8 1151 22

Method 9 1352 30

Best .0810 81

Worst 4740 0

Table 1: Summary of Q7 Corpus Statistics

one of the 9 restoration methods (as indicated by the value in the third column for “Best”).
The extent to which these improvements can be realized in practice however depends on the
accuracy with which we can chose an appropriate restoration technique.

The average OCR error rate for unrestored documents is approximately .1105. If a perfect
classifier exists under P, i.e. one that can always choose the best restoration method based on
the document representation x, then the result in Table 1 indicates that the average error rate
can be reduced to approximately .081. This then serves as an estimate of the lower bound on
the achievable error rate. At the other extreme, if a classifier exists that can always choose
the worst restoration method then the result in Table 1 indicates that the average error rate
would climb to approximately .474. This serves as an estimate of the upper bound on error
rate. We consider both these bounds to be loose, since it is unlikely that either a perfect or
worst—case classifier exists. Nevertheless, they provide useful insight. For example, the fact
that the average OCR error rate for the unrestored corpus is approximately .36 below the
upper bound but only about .03 above the lower bound suggests that it may be difficult to find
classifiers that give improved OCR error rates for this corpus.

We now describe experimental results for the following classifier design methods.

kNN: The k—nearest neighbor method described in Section 3 with the Euclidean metric.

LM: An M-class linear machine trained with GMR to minimize the empirical error e, defined
in (5).

QM: An M-class quadratic machine trained with GMR to minimize the empirical error e,
defined in (5). This method is identical to the linear machine above expect that the 7-
dimensional feature vectors = = (z!,...,27) are extended to 35 dimensions by augmenting
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them with all second order terms formed from the pairwise products of the original 7
features.

LMO1: An M-—class linear machine trained to minimize “classification error”. With this
method each sample is considered to be “misclassified” if it is assigned a restoration
method other than one that gives a minimum OCR error rate. The goal in the train-
ing process is to produce a classifier that chooses a restoration method that gives the
minimum individual OCR error rate for as many samples as possible. This corresponds
to treating our problem as a traditional M—class classifier design problem with zero—one
loss. To use the GMR algorithm let

¢ € argminyy
ceC

and then set the ¢;—th component of y; to 0 and the rest to 1, i.e.

yi = (11...1 0 1...1)

C'L

This loss function makes no distinction between restoration methods that do not give the
minimal OCR error rate for individual samples.

QMO1: An M—class quadratic machine trained with GMR to minimize the same classification
error as LMO01 above.

MV01: An M—class classifier formed as a majority vote of M (M —1)/2 2—class classifiers, each
trained with the Pocket algorithm to minimize the 2—class classification error (zero—one
loss). This was the method applied to this problem previously in (Cannon et al., 1999).

In all cases the results reported are an average of ten 10—fold cross validation runs. The number
of iterations used in the GMR and Pocket algorithms is 10,000,000. For the kNN method the
value of £ was chosen for each cross validation run using a second 10-fold cross validation on
the training subsample for each k € {1,2,...30} and choosing the value with the smallest error
estimate.

Table 2 summarizes the average OCR error estimates for the classifier design methods.
Earlier we mentioned that there is little room for improvement with this corpus (less than
approximately .03). In addition the error rate estimates obtained with this size of corpus not
accurate enough to distinguish between values that differ by less than .03 with high confidence
(e.g. see the estimated standard deviation of the OCR error estimates in the third column
of the table). Thus our interpretation of the results in Table 2 are made with this caveat.
With this in mind we note that all methods provide improved estimates over no restoration.
In addition all the methods introduced in this paper give improved estimates over the MV01
approach taken previously. The best error estimate is reported for the Linear Machine (LM),
although the kNN and Quadratic Machine (QM) have similar performance. The Quadratic
Machine (QM) performance is slightly worse than the Linear Machine (LM) suggesting that
it may suffer from overfitting. Methods trained with the zero—one loss (LMO01 and QMO01)
perform consistently worse than their counterparts trained with the generalized loss (LM and
QM). As expected however, the average classification errors for LM01 and QMO1 are less
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than for LM and QM respectively. Specifically, the average classification error estimates are
LM01=.767, LM=.778. QMO01=.756, QM=.777. This demonstrates that an optimal classifier
for the document restoration problem is not achieved by optimizing classification error. On
the other hand, classifiers designed to optimize classification error (MV01, LM01 and QMO01)
appear to do surprisingly well on this corpus. Finally we report that the estimate of the fraction
of documents whose OCR error rate is improved is 0.49 for all four methods LM, QM, LM01
and QMO1. This is .32 below the upper bound of .81 in Table 1.

‘ Method Average OCR Error Rate | Standard Deviation ‘

No Restoration .1105 .014
MVO01 1018 -

kNN .0983 .012
LM .0977 011
QM .0988 .013
LMO1 1019 .013
QMoO1 .1002 013

Table 2: Comparison of methods. The third column gives the standard deviation estimate for
the average OCR error rate estimates.
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Appendix A: Proofs

Proof of Theorem 5. Our proof is motivated by the analysis of the Pocket algorithm in (Muselli,
1997). The foundation for this proof hinges on two well-known results for the randomized per-
ceptron algorithm. First, the values of w visited by the randomized perceptron algorithm
remain bounded, and second if the sequence of samples drawn in the main loop includes a
specific type of subsequence exclusively from a PL multisample Z* then the algorithm will
produce a value of w from the witness set Q. Our proof proceeds by showing that for any PL
multisample ZT, and in particular for an optimal Z T, the sequence of samples drawn in the
main loop includes such a subsequence wpl.

Let Z = ¢(A) and let D satisfy |z;] < D,Vz; € Z. The perceptron cycling theorem
guarantees that |w(k)| remains bounded for all iterations (Block & Levin, 1970). In particular
this result is true (and nontrivial) in cases where the algorithm iterates indefinitely. Such cases
occur when there is no value of w for which all samples in Z are w—positive. Let B be this
bound when RP is initialized with w(0) = 0.
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Consider the collection of PL subsamples Z;',z' = 1,2,... of Z and let Q;",z’ =1,2,... be
their witness sets. Define the margin for subsample Z¢+ to be

w-zj

p; = max min .
wEQ;-" szZi+ |w‘

Let r; = |Z;"| and consider a sequence of samples from Z;" of length r; in which each point
from Zi+ appears exactly once. We define a cyclic sequence of length x from Zz-+ to be the
concatenation of [k/r;| such sequences truncated to length k. The perceptron convergence
theorem guarantees that when the RP algorithm encounters a cyclic sequence of length x =

LWJ from Z; beginning at iteration k then w(k + k) € Qf (Novikoff, 1962; Vapnik,

1998). Let

D2 —|—B2
P

|.

ki = |

Since B bounds the size of any w(k), x; represents a lower bound on the number of iterations
sufficient to guarantee that a member of Qj’ is produced when a cyclic sequence from ZZ-+ is
encountered during the algorithm.

Since R is PLD there exists a PL subset of Z whose witness set witnesses the minimal value
of R. Let ¢* be the index of such an optimal PL subsample and define the event

A: a cyclic sequence of length [ > k4 from Zj; is presented to Ratchet during the first &k
iterations.

and its complement

A: no cyclic sequence of length | > k;x from Zzi' is presented to Ratchet during the first k
iterations.

Let R* = min, R4(w) and Ry = R4(w*(k)). Let € > 0 be so small that
{Ra(w) # R*} = {Ra(w) — R* > ¢}
Then

P(Ry — R*>¢) = P(Ry # R

—1- P(R, = R) 28)
<1-P(4)
~ P(4)

Define the event

B: an i.i.d. random sequence of length x;+ from Z is a cyclic sequence from Z;Z
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Since the total number of sequences of length x;+ is finite the probability of this event is strictly
greater than zero. Let ¢; > 0 denote this probability.

Now consider a sequence of length k£ > k;« and partition it into adjacent (nonoverlapping)
subsequences of length x;«. Let o be the set of |k/k;- | subsequences of length x;+ formed in
this way. If there is no cyclic sequence of length [ > k;« from Z;: in the first k iterations then
there will be no cyclic sequence of length x;« from Z £ in o, and since the sequences in ¢ are
independent

P(A) < (1 —g)l¥/merd.
Substituting into (28) gives
P(Ri— R > €) < (1 - gi) ¥/,
Since x;+ is finite and g;« is strictly greater than zero

ZP(R]C—R*>€ Z 1 — g ) F/mir) < o0,
k=1 k=1

This implies that (e.g. see (Serfling, 1980), p.10)

P(lim R, = R") =
k—o00
and the proof is finished. ¢

Proof of Lemma 4. For any w € R the criterion value is a finite sum and therefore the
criterion achieves its infimum on a nontrivial set Q*(A4) C R4, If we let

c, s =1
C; =
c—1, s;=-—1.

and define C' = Y, ¢; then R4(w) in terms of correctly classified samples is
n
=C— Z(c,lI(w-fi <0,85=-1) + i l(w-& > 0,8 = 1))

=C- Z(cl Szfz > 0) + C_lI(w . (31&) =0,s; = _1)>
and from the definition of ¢

n
Rp(w)=C — Z(cﬂ(w czi>0)+c 1 l(w-2=0,8 = —1)). (29)
i=1
To complete the proof we verify conditions 3.1-3.3 in Lemma 3. For any w € R4+ let
5_{1, w2z =0 for all z; € Z

ming; ez .20 |w - zi|,  otherwise
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and let
O=w-—(5/2,0), 0eRL
This gives
W-2;>6/2>0, when (w-2;>0)or (w-2,=0,8;, =—1)
W-2; <—0/2<0, when (w-2; <0) or (w-2;=0,8;, =1)
and therefore condition 3.1 holds and (29) can be written

n
Ro(w)=Ra(@)=C=) ¢l(w-z>0=C— Y c.
i=1 ieJ+(w)
which verifies condition 3.2. The right hand side of this expression also establishes a monotonic
relation between nested sets J* and the values of R which verifies condition 3.3 and completes
our proof. ¢
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